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SUMMARY 

 

 The present study addresses the aerodynamics of a lobed body immersed in a Mach 6 

hypersonic flow field at sea level. As a first study of this type, the shape of the body is held 

fixed, and the flow field is resolved by applying state-of-the-art large eddy simulation techniques 

in conjunction with a hybrid shock-turbulence capturing algorithm. Air is treated as a mixture of 

nitrogen and oxygen, and the governing equations are closed by a modern compressible 

turbulence closure term. Pressure is determined by using the thermally perfect gas equation of 

state applied to each species. The distribution of temperature is determined on the body surface 

as well as temperature gradients based upon adiabatic wall boundary conditions. The structure of 

the flow field is examined as is the time required for stationarity. Both turbulent statistics and 

spectra are determined at points on the surface of the body. Times series analyses are performed 

for aerodynamics forces encountered by the body. 
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1 INTRODUCTION 

 

 The past two decades have been witness to major advances in computing power, particularly 

in the area of parallel computing. For instance, in 1995, the author’s doctoral research was 

performed on a CRAY Y-MP with vector registers, 512 MB of memory and a clock speed of 167 

MHz. The system had no more than eight vector processors and had less capability than the 

ThinkMate 8-Way system (32 cores) that resides by my desk. Now, we have high performance 

computers (HPC) platforms such as RAPTOR, a CRAY XE6 with 40,000 cores and 2GB 

memory per node. There are 32 cores per node making for a staggering improvement in 

computational capability. This windfall in computer power constitutes a boon for the field of 

computational physics. Modest improvements in numerical algorithms, particularly those for 

solving partial differential equations (PDEs), can now be fully implemented and exercised with 

fewer restrictions imposed by memory size or execution speed. Fields such as Computational 

Electromagnetics (CEM), Computational Structural Mechanics (CSM) and Computational Fluid 

Dynamics (CFD) can benefit from the use of research-grade numerical schemes and state-of-the-

art material models. In some cases, computational tasks requiring several weeks of computer 

time (just five years ago) can now be completed in a few hours. We do not exaggerate when 

today we claim that many chemical dynamics and material modeling problems can be solved via 

Quantum Chemistry algorithms on HPC systems. Budgetary considerations aside, it is a 

fortuitous time to work in the field of Computational Physics. 

 

 From an egocentric standpoint, the field of CFD is undergoing a transition. Aside from its 

earlier focus on solving problems in aerodynamics, CFD is now working to incorporate 

additional physics within its algorithmic bag of tricks. Some of the more recent and important 

work enables both shock waves and turbulent eddies to be captured without mutual 

degradation.[1,2] State-of-the-art dynamic methods for Large Eddy Simulation (LES) of 

turbulence are also carried into the realm of shock physics as a unified algorithm. This advance 

presents a powerful toolset for capturing the physics of extreme environments such in the violent 

interior of stars or in the core of manmade explosions.[3,4] The current research field, regarded 

hereafter as Multiphase Physics (MP), concentrates on simulating matter fields of just level of 

complexity where multiple phases of matter may be involved along with chemistry and extreme 

pressures and temperatures. What is extreme? From the standpoint of some of our recent work, 

extreme may be defined as temperatures above 5000˚K or pressures cast in the Giga-Pascal 

range. Naturally, MP problems are quite realistic in that they may contain solid particles or liquid 

droplets that combust or react chemically with a surrounding gaseous, turbulent flow field.[5] 

From our point of view, a properly formulated set of numerical algorithms contains all of the 

requisite physics for the problem; these algorithms, in turn, autonomously resolve the problem 

physics based upon only the input parameters such as geometry and initial conditions (including 

the relevant chemical species). It is out desire to minimize or even eliminate any processes such 

as “tuning” of “calibration” of the computer algorithms undertaken on the part of the user. The 

problem under study below exemplifies this idea. 

 

 As we alluded to earlier, the physics of extreme environments is very interesting. The 

hypersonic flow field created around a solid body under sea level flight conditions is an example 

of just such an environment. Although hypersonic flow was of great interest in the final quarter 
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of the twentieth century, the focus of the research was largely confined to high altitude flight. 

This effort was motivated by the space program. We are concerned with the behavior of 

hypersonic flow in the thick atmosphere where gases such as oxygen and nitrogen have higher 

partial pressures. In combination with trace gases, these species are likely to react chemically 

near the surface of an immersed body. As one may expect, temperatures will soar in the body’s 

boundary layer as viscous forces slow the flow stream to satisfy the no-slip boundary condition. 

The variation in temperature can vary over a wide range, so our equation of state (EOS) must 

correctly capture changes in the gaseous specific heats. It is worth noting that the older 

calorically perfect gas model over predicts temperatures.  During the period of time 

encompassing the 1960s through the 1980s, hypersonic flow and high temperature gas dynamics 

were intensively studied because of the design needs of reentry vehicles and concept designs 

such as the National Aerospace Plane.[6] In deference to supersonic flow, there is no strict point 

of demarcation in terms of speed heralding the hypersonic regime. For aerospace vehicles 

commonly studied, the onset of hypersonic flow physics is encountered in the range of Mach 3 to 

Mach 5, or even higher. The physics associated with this regime is very different that that 

associated with slower speed flow. Hypersonic flow is characterized by the presence of thin 

shock layers that lie between the body and the shock wave.[6] At higher Mach numbers, this 

layer becomes even thinner, and it may even merge with the boundary layer. The presence of an 

entropy layer is also characteristic of many hypersonic bluff body flow fields. Bluff (or blunted) 

bodies cause the formation of curved shock waves that stand some distance away from the body. 

The strength of the shock wave and the attendant entropy jump changes along with shock 

curvature. It is strongest at the “nose” and weakens as the shock wave straightens downstream. 

This effect causes a flow with strong entropy and vorticity gradients to wash down the body 

thickening the boundary layer.[6]  High temperature gas dynamics are often encountered in 

hypersonic flow fields. In order to satisfy the no-slip boundary condition, the flow must reduce 

from hypersonic speed outside of the boundary layer to zero at the body surface. This situation 

stands in stark contrast to earlier models of hypersonic flow that allow slip (or tangential flow) at 

the body surface. The mechanism decreasing the flow speed is viscous dissipation or friction. 

The kinetic energy of the flow is transformed into the internal energy of gas molecules in the 

boundary layer. As a result, boundary layer temperature increases dramatically.[7] In slower 

speed flow fields, this energy is absorbed mostly in molecular translational and rotational modes, 

but for hypersonic speeds, energy may be absorbed in vibrational modes.[8] The existence of the 

latter mode tends to moderate the rise in temperature and motivates the use of more advanced 

EOS models for gas mixtures. 

  

 Over more complex body shapes, the attendant high Reynolds number leads us to expect the 

formation of pockets of turbulent flow. It is important that our physics simulation capture this 

behavior since turbulence has a potent effect over chemical reactions. In turn, chemical reactions 

affect temperature at the body surface. All of these effects combine to shape the aerodynamic 

forces (or loads) exerted on the body. The loads, of course, exert a great deal of influence over 

the body’s flight stability. A goal of this report is to investigate the evolution of turbulent flow at 

hypersonic speeds under sea level flight conditions. It is desirable to consider an immersed body 

with enough complexity to support turbulent flow while retaining the ease of single block grid 

generation. As is shown in Figure 1, our test body has a complex shape characterized by a blunt 

nose and an elongated body distending into fin-shaped lobes. The body is immersed in a Mach 6 
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flow field with angle of attack and side slip angle both fixed at 5˚.  The grid for this body is 

generated through the use of algebraic techniques; the specifics are discussed later in this report. 

 

 

 
Figure 1. Single-Block Test Geometry 

  

 

 

 State-of-the-art LES techniques are used to simulate flow around the body at the 

aforementioned flight conditions. These methods allow the viscous, turbulent flow field to be 

resolved with high accuracy. Adiabatic wall conditions are enforced at the solid surface for the 

resolution of temperature. In the course of the simulation, the time required to achieve a 

stationary flow field is determined. Flow properties vary in a cyclical manner indicative of a 

stationary flow. Pressure, subgrid kinetic energy, temperature and temperature gradient 

distributions are also determined on the body surface. Velocity correlations, turbulent kinetic 

energy spectra and probability distribution functions for fluctuating velocity components are 

determined at points near the body surface. 

 

 The remainder of this report is organized as follows. Section 2 contains an exposition of the 

theory behind our LES methodology including current research in subgrid models. Section 3 

contains brief descriptions of the numerical techniques used in LESLIE3D as well as a 

discussion of our grid generation technique. The statistical analysis techniques employed are also 

briefly presented. Some of the specifics associated with the set-up of our simulation are 

presented in Section 4. Section 5 contains the results of our simulations at Mach 6 along with the 

analyses produced by statistical post-processing. Section 6 of the report is dedicated toward 

conclusions along with a wrap-up of our findings. 

 

2 THEORY 

 

The numerical flow field solutions described below have been generated by using the Large 

Eddy Simulation with LInear Eddy modeling in 3 Dimensions (LESLIE3D) computer program. 

LESLIE3D is a state-of-the-art MP research tool developed by Suresh Menon at the Georgia 
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Institute of Technology.[9] This computer program has a core capability for dynamic large eddy 

simulation (LES). That is to say, flow field features existing at the scale of the grid or larger are 

simulated by numerical solution of the conservation equations. Flow features existing at the 

subgrid scales (scales smaller than the mesh size) are modeled.[10] The subgrid effects are 

represented in the conservation equations via closure terms. The theory behind LESLIE3D is 

described in the following sections. 

 

2.1 Filtered Governing Equations 

 

 The gas phase conservation laws used in LESLIE3D consist of the compressible Navier-

Stokes equations cast in three dimensions. For real turbulent flow fields (in spite of today’s 

computer resources), we cannot solve these equations via direct numerical simulation (DNS) for 

Reynolds numbers exceeding 8000.[11] One may recall that hypersonic flow fields are 

characterized by Reynolds number of one million or more. Our LES approach first involves 

spatially filtering the governing equations at the grid scale in order to produce a set of turbulence 

closure terms that are later modeled.[12] The Navier-Stokes equations are filtered in order to 

permit the large spatially dependent scales for fluid motion to be separated from the small 

universal scales.[13] In the equations below, the overbar indicates a spatially filtered quantity 

while the tilde (~) indicates a mass averaged property, i.e., 
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where sNk ,,1 , sN being the number of gaseous chemical species involved in the calculation. 

Equations (2) through (5) are mass, momentum, energy and species conservation equations, 

respectively. Symbols  , iu  , P  , kY   and iq  are the mixture gas density, velocity component in 

Cartesian component direction ix , absolute pressure, mass fraction for the 
thk species and heat 
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flux component in direction ix , respectively. Symbol ji  contains the components of the 

Cartesian shear stress tensor while E  represents the total energy per unit volume, i.e., 
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The summation convention is applied to the index l  in (6) and (7). The Fickian diffusion 

velocities are given by kiV , . The subgrid stress tensor 
sgs

ji , subgrid total enthalpy flux sgs

i
H , 

subgrid convective species flux 
sgs

jiY , subgrid viscous work sgs

i and subgrid species diffusive 

work 
sgs

ki ,  are subgrid quantities produced by the filtering process. Their exact forms may be 

written as 
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The filtered species diffusion velocities are given by  
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where kD  is the diffusion coefficient for species k. In equations (8) through (12), the arrowhead 

brackets “< >” denote mass averaging as does the “~” notation. These equations contain averages 

of products between variables. The repeated index in (12) does not imply summation. Not being 

known a priori, the subgrid terms must be treated as variables. The result is that the system of 

filtered governing equations now has more variables than equations and cannot directly be closed 

for solution. Closure can only be accomplished by modeling these subgrid quantities.[10]   

 

 Thermochemical and thermophysical behavior for the system must also be described. 

Chemical reactions occurring between species are governed by a reaction mechanism specified 
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by the user. The rate of mass transfer of between species is given by k , the filtered reaction rate 

term.[12] Pressure and temperature in the gas mixture are determined through the use of a 

filtered perfect gas equation of state, i.e., 
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with UR  equal to the universal gas constant, and 
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kMW  is the molecular weight of species k . The sum of subgrid species-temperature correlations 

is given by sgsT , i.e., 
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The filtered mixture internal energy may be expressed as 
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In equation (9), kVC ,  is the constant volume specific heat for species k , and sgs

kE  is the subgrid 

internal energy for species k , i.e., 
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The heat flux term may be written as 
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where   is the local coefficient of thermal conductivity.[9] The subgrid species heat flux may be 

expressed (with no summation over k ) as 
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Note that repeated indices in (18) and (20) do not imply summation. Also the filtered sensible 

species enthalpy is 
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The specific heat at constant pressure for species k  is written as 
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2.2 Modeling Correlations to Obtain Closure 

 

The subgrid terms, denoted by superscript “sgs”  cause difficulties in closing the system of 

governing equations. LES fixes this problem by modeling these terms based upon the resolved 

flow properties. Specifically, we neglect sgsT , 
sgs

ki  , 
sgs

ikq and sgs

kE  since these terms tend to be 

small.[12] The crux of the modeling process lies in the determination of the subgrid stress tensor 

based upon the subgrid kinetic energy, i.e., 
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where the evolution equation for subgrid kinetic energy is given by 
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The subgrid kinetic energy is mathematically defined as 
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where the summation convention is in effect for the index l .[9] Equation (24) is integrated along 

with the conservation equations, and as a model equation, relies on a set of parameters such as 

the eddy viscosity
 t  given by 
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t k                                                           (26) 

 

where  is a coefficient set by the Locally Dynamic subgrid Kinetic energy Model (LDKM).[9] 

The dissipation term for 
sgsk  is 
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with   as the LDKM dissipation coefficient (analogous to  );   is the local grid scale 

measurement. For most problems, K and K are set to 0.067 and 0.931, respectively. Other 

parameters introduced in (24) are   the dynamic viscosity, tPr  the turbulent Prandtl number, 

sgs

tM  the turbulent Mach number based upon 
sgsk , and pd  is a pressure-dilatational scaling 

coefficient. Note also that (23) and (24) are tightly coupled through the presence of both 
sgsk  and 

sgs

ji . 

 

 The theory that underlies LDKM is quite complex, and the details of implementing the above 

equations (along with others not shown) are beyond the scope of this report. This statement is 

especially true when we employ the algorithms developed for dynamically updating  K and K . 

Still, it is worthwhile to discuss the motivation behind this model. In the first place, one may take 

note of the number of coefficients existing in (24), (26) and (27). The proliferation of 

coefficients indicates that LDKM is indeed a model, but these coefficients are not tunable. 

Instead, they are in most cases based upon knowledge of the dynamic behavior of turbulent 

compressible flow fields. That is to say, these coefficients are set either autonomously by LDKM 

operating in dynamic mode or remain fixed as described above.[12] Also, LDKM diverges from 

most contemporary dynamic LES models through the presence of the term marked by an (*) 

asterisk. This term represents dilatational effects within the flow field due to pressure. It is 

through this term that (24) becomes representative of highly compressible flow fields. This 

equation stands as an example of state-of-the-art research in this field. When operating LDKM in 

dynamic mode, the subgrid scale properties are made to behave in an inertially correct manner 

with respect to the resolved flow field. 

 

 The remainder of the subgrid terms are not as difficult to model although the subgrid kinetic 

energy is still relied upon (at least in part). 
sgs

iH  and 
sgs

i  are modeled as one by using eddy 

viscosity closure form, i.e., 
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The subgrid diffusion of species mass fractions is modeled by using an eddy diffusivity form, 

i.e., 
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where Sct is the turbulent Schmidt number. The dynamic viscosity µ is computed from 

Sutherland’s law. That is, 
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for a reference viscosity µ0. 

 

3 NUMERICAL METHODS 
 

 In the preceding section, the filtered Navier-Stokes equations are presented along with the 

equations for LDKM. These equations are well suited for describing turbulent flow fields in any 

flight regime (subsonic, supersonic and hypersonic). In this part of the report, we discuss the 

numerical algorithms associated with solving these equations. Our grid generation method is also 

described. The hypersonic flow problem of interest is characterized by the presence of strong 

shock waves and high temperature gas dynamics. Historically, it has proven difficult for 

computer codes to simultaneously capture both shock waves and subtle turbulent flow field 

fluctuations. This difficulty is caused by differences between high accuracy space schemes and 

schemes designed to capture strong discontinuities. Generally, numerical dissipation is used to 

dampen oscillations around shock waves, yet this same dissipation washes away the weaker 

vortical motions associated with turbulence. On the other hand, high order centered difference 

stencils are usually required to resolve turbulence eddies, but these stencils cause severe spurious 

oscillations around shock waves. It is also important to realize that shock-capturing algorithms 

must be able to contend with complex equations of state. For instance, we prefer to use the 

thermally perfect gas equation of state in the hypersonic flight regime in order to accurately 

resolve temperature. To satisfy these requirements, our efforts have produced a two-part scheme. 

For shock-capturing, we apply what is referred to as the Harten-Lax-van Leer-Contact/Einfeldt 

(HLLC/E) approximate Riemann solver.[14,15] In smooth regions of the flow field, we apply a 

second/fourth order MacCormack solver used in the earlier incarnations of LESLIE3D. A 

switching algorithm allows the computer program to autonomously select the appropriate space 

scheme based upon local properties throughout the flow field. Below, we present brief 

descriptions of the spatial integration schemes. 

 

3.1 The HLLC/E Approximate Riemann Solver 
 

 HLLC/E is composed of HLLE (HLL-Einfeldt), a scheme that does not preserve the contact 

wave, and HLLC (HLL-Contact), a scheme that does capture the contact wave. In this context, 

the contact wave is, in fact, a contact discontinuity, a common flow feature exhibited by the 

shock tube problem as well as by strong blast waves. These numerical schemes are constructed 

on a one-dimensional coordinate oriented normal to a finite volume interface. We can orient this 

coordinate across any of a finite volume cell’s interfaces, so the technique is readily usable in 

three dimensions. The HLLC/E solution is calculated for a vector of conserved variables 
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the associated flux vector is 



 

 

Distribution A 

 
 

 

10 

 

             ),,,,)(,,,,( qYqYqkqPEnPqwnPqvnPquqF
sN

sgs

zyx  


1       (32) 

 

where zyx nwnvnuq  , and knjninn zyx
ˆˆˆˆ   is the unit surface normal vector at the 

interface.[12] Based upon these definitions, the HLLE numerical flux vector can be written as 
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where 
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One may note from the form of (33), that the HLLE method recognizes a shock discontinuity, 

but not a contact surface. The Einfeldt wave speed estimates are 
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In (35) and (36), c  is the speed of sound, and the notation ( ˘ ) indicates Roe averaging.[16] This 

numerical flux works quite well for hypersonic flow and is not susceptible to contact instabilities 

that can occur when strong bow shocks are aligned with the grid. Unfortunately, because of 

dissipative effects near the contact wave, it cannot be used for extended regions of the flow field 

where turbulence may be present.[12] It is also best not to apply this scheme for moving shock 

waves or obliquely oriented shocks. Under these circumstances, the HLLC numerical flux shows 

improved performance. The numerical flux for the HLLC scheme has a different form, i.e., 
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In (37), intermediate states 
*LU


 and 

*RU


 are introduced in order to model the presence of the 

contact discontinuity.[14] These states may be written as 
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with 
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and the intermediate wave speed 
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The state 
*RU


is formed by replacing R  for L  in (38) through (43). In LESLIE3D, both of these 

numerical flux formulations are used to form the HLLC/E scheme. We state the result only, i.e., 
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This method requires shock detection in directions transverse to the direction of the interface 

normal, so 
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and so forth. 

 

 A close inspection of the numerical flux formulas above reveals that the computation of the 

numerical flux first requires the left ( L ) and right ( R ) states be identified at ( 21/i ), an 

interface location. These “upwind” states are reconstructed from the data stored in the finite 

volume cells. This process is accomplished with the use of Monotone Upwind Scheme for 

Conservation Laws (MUSCL) interpolation.[17] High order interpolation also requires the use of 

a nonlinear limiter with “flattening”
 
in order to maintain data monotonicity.[18] The details of 

these procedures are omitted from this work. 
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3.2 The MacCormack Solver 
 

 For the “hybrid” shock-turbulence capturing solver, it is necessary to switch between the 

upwind scheme and a centralized scheme based upon MacCormack’s method when calculating 

the numerical flux at interfaces. The finite difference version of this scheme uses forward and 

backward differences alternatively to remove bias from numerical error. For the finite volume 

scheme, we choose forward and backward upwind variables alternatively for the flux 

computation, i.e., 
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where 
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It can be shown that this scheme is stable and second order accurate in space. LESLIE3D also 

offers a MacCormack space scheme accurate to the fourth order. The hybrid method is required 

to switch back and forth between the upwind and MacCormack solvers. The “switch” is based 

upon the “smoothness” of the flow field.[19] Principally, LESLIE3D autonomously switches on  

the upwind scheme only in the vicinity of flow field discontinuities and employs the 

MacCormack solver in smooth regions of the flow field. This hybrid methodology performs 

quite well and has been extensively validated for the Richtmyer-Meshkov instability.[19] It has 

also shown a great deal of efficacy for simulating shock-turbulence interaction problems such as 

the reactive blast wave. 

 

3.3 Time Integration Scheme and Computer Code Structure 
 

 LESLIE3D utilizes explicit time integration to capture the physics associated with unsteady 

flow fields. Specifically, we find that explicit time integration is very effective for accurately 

simulating wave propagation. Although, the explicit time step is limited by the Courant-

Friedrich-Lewy (CFL) criteria, it presents a high level of efficiency and computational simplicity 

on parallel machines. A version of the modified Euler method is applied for the MacCormack, 

upwind and hybrid schemes. This time integration method (in two steps) is briefly summarized 

for one space dimension as follows.[20] 
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Equations (49) and (50) require minor adaptations for use with problems cast in three 

dimensions. Basically, the length term x  roughly corresponds to a ratio of the cell volume to an 

average surface area for the interface normal to the coordinate indexed by i . The advective terms 
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in (2) through (5) are easily discretized for structured, hexahedral finite volumes while the 

viscous terms require a basic generalized coordinate transformation.[13] The mathematical 

procedures are relatively easy to accomplish and are quite robust. 

 

3.4 Algebraic Grid Generation 

 

 At the beginning of this report, we mentioned that a principal goal of this work is to develop a 

rapid method of generating grids for a relatively simple body geometry. Our prior work in this 

area required a great deal of grid generation effort (over 200 blocks). The workload associated 

with making even the most changes to this grid (such as adding points) is daunting. In this case, 

we employ a single block grid for a simpler geometry that possesses the desired lobed design. 

Since the body shown in Figure 1 still possesses some symmetry, the elected plan of attack 

entails generating a series of two-dimensional grids parallel to the longitudinal body center. 

These two-dimensional slices can easily be joined laterally to create the three-dimensional mesh. 

Any of the longitudinal slices can be described by four arcs: one along the body surface, the 

second along the farfield arc. The third is from the center point on the node to the farfield, and 

the fourth is from the center point on the tail to the farfield. These arcs are illustrated in Figure 2. 

 

 
Figure 2. Arrangement of arcs for a two-dimensional grid slice 

 

By establishing a mapping between from arc 1 to arc 2 and then from arc 3 to arc 4, a two-

dimensional mesh may be generated. Transfinite Interpolation (TFI) is a commonly applied 

algebraic technique used to perform this task.[21] TFI is a very fast and easily programmable 

procedure. Of course, it has its disadvantages. TFI, in its original form, offers little control over 

point spacing say, adjacent to the body surface. Also, it offers no direct means of enforcing 

orthogonal intersections of grid lines. One may recall that highly non-orthogonal meshes can 

result in increased numerical errors in CFD simulations. These errors can be particularly 

prevalent in the discretization of viscous terms. For this reason, a variant of TFI involving 

Hermite polynomials is utilized for this work. 

 

 In its first incarnation, TFI provides a smooth grid (in many cases) with some control over 

point spacing. Unfortunately, it offered no control over the slope of grid lines intersecting the 

boundary. This problem occurred largely because the blending functions employed by TFI 

allowed only the specification of a point on the boundary.[21] The slope at this point could not 

be specified. Later on, TFI was improved by incorporating Hermite polynomials as blending 

functions.[22] These polynomials are more evolved than the older linear blending functions and 

allow a value for the slope to be specified at the endpoint of an arc. Although offering great 
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utility, the use of Hermite polynomials does complicate the mapping equations. Referring to 

Figure 2, we employ the four-boundary method developed by Shih et al.[22] We begin by 

selecting pairs of opposing arcs for the first interpolation step. We select arcs 1 and 2 (“parallel” 

to the body surface. Let points along arc 1 be denoted as )),(,),(( 00 11  YX . The first 

interpolation is conducted in the η direction, so the relevant slopes along arc 1 are designated as 
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. All of these values must be supplied by the user. Accordingly, 

analogous information must be provided along arc 2, i.e., ),( 12 X , 
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. Let two-dimensional grid points in the field for step 1 be designated as );,( 11 yx  

then the step 1 equations are 
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            (51) 

 

Functions h1 through h4 are the Hermite polynomials 
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Equations (51) contains a few strange quantities, the partial derivatives of x and y. These 

quantities x and y are actually point coordinates for the final grid. What makes these equations 

strange is that the final grid coordinates are unknown at this stage of the procedure. For the first 

two or three readings of the core reference, this notation proved to be confusing. What one must 

realize is that the partial derivatives in (51) are strictly defined along the boundary arcs for the 

final grid. Yet, these boundary arcs mathematically coincide (up to a discrete distribution of arc 

points) with arcs ),( 11 YX and ),( 22 YX . Therefore, the notation used in (51) does make sense, 

and the properties (curvature, etc.) of the curves 
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are known a priori. In fact, these curves provide the opportunity to control the slopes of grid 

lines along the boundary. We may specify them as follows: 
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Functions 21,  are used to control orthogonality of the grid lines and also to help prevent grid 

adjacent lines from crossing.[23] Notice that the derivatives of x (with respect to η) depend upon 

the derivatives of y (with respect to ξ). A similar statement can be made for derivatives of y. Note 

that the right hand sides equation (53) are calculable since point coordinates for arcs 1 and 2 are 

known. The negative signs shown in (53) are essential in controlling grid line orthogonality at 

the boundary. More particularly, recall that the normal line slope to a point on an arc is given by 

the negative reciprocal of arc slope at the point. 

 

 Equations (52) and (53) perform an accurate and well controlled interpolation between arcs 1 

and 2 in the η direction. However, the resulting distribution of points fails to match arcs 3 and 4. 

A second interpolation representing the ξ direction is warranted. As is dictated by original TFI 

theory, the second step interpolates the errors generated by the first step.[21] This dictum is 

enforced here, but the equations differ slightly from the classic TFI equations. The goal of this 

step is to determine increments )),(,),((  yx   such that 
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where )),(,),((  yx  are the final grid points’ coordinates (unless one elects to redistribute 

points along the grid lines). These increments are calculated as follows. 
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where the Hermite polynomials are expressed as 
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The partial derivatives of x and y set along the boundary in (56) and (57) are defined below. 
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Equations (55) and (56) also contain derivatives of the stage 1 grid coordinates ).,( 11 yx  The 

formulas for these derivatives are produced by differentiating (51). We simply list the results. 
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With the use of the equations presented above, a grid is easily produced for a two-dimensional 

slice. Derivatives along the boundary arcs occurring in (53) and (58) can be either analytically or 

numerically calculated. Since we are resolving a viscous flow field, maintaining control over the 

grid point spacing normal to the body is important. For this reason, points along constant ξ grid 

lines are redistributed after the two-dimensional grid has been generated. We have elected to 

redistribute the points via hyperbolic sine arc length transformation.[21] Given the prevalence of 

this transformation in modern grid generation, the details are omitted from this report. 

 

 The final step in this process is to create the three-dimensional grid. Two-dimensional slices 

are generated at each azimuthal station around the circumference of the body. The aerodynamic 

body has five lobes, so the shapes of any two adjacent slices differ from one another. Common 
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longitudinal (i) and normal ( j) indices are used to generate these two-dimensional mesh slices, 

so connecting them through the azimuthal index (k) to form hexahedral volumes is not difficult. 

This method produces an adjustable mesh very quickly and even permits grid lines spacing 

controls for the mesh interior. Although our mesh is not highly orthogonal, cells adjacent to the 

body do have nice aspect ratios. 

 

3.5 Computation of Turbulent Statistics 
 

 A topic of great interest in the present work is an investigation of turbulent flow near the 

aerodynamic body surface. Localized regions of elevated subgrid kinetic energy (a primary 

indicator variable for turbulence) are examined with statistical analysis methods. We consider 

three such analyses: (i) a velocity correlation matrix, (ii) the probability distribution function for 

velocity fluctuations and (iii) the spectrum of turbulent kinetic energy. These statistical 

investigations are not exhaustive, yet they do render insight into properties of the turbulent flow 

field at high Mach numbers. To perform a more in-depth study, it would also be necessary to 

analyze the wave number content of turbulent kinetic energy for two-point correlations.[24] 

 

 The velocity correlation matrix shows, on the average, how different fluctuating velocity 

components correlate with one another in time; that is to say, are the fluctuations, existing at 

point in space, “like” one another in the way they change? To produce the matrix, we rely on the 

time average defined as 
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Equation (63) is interesting because, at face value, it seems to remove all time dependency from 

the time averaged quantity. In fact, this interpretation is used within the context of this report. 

Still, there is a wider interpretation of (63). Since the time average relies upon parameters t0 and 

T, t0 is the point in time where the average is anchored while T can be thought of as the “width” 

of the averaging window. The interpretation is more clearly illustrated by rewriting (63) with the 

transformation 200 /
~

Ttt  , i.e., 
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 Velocity fluctuations are computed as follows. Let ui denote the i
th

 component of fluid 

velocity. Then the average of this component is denoted as iu , and its associated fluctuation is 

computed as 
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Based upon (63), the velocity (one-point) correlation matrix is defined as 
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                                                              jijiji uuuuuu                                                         (66) 

 

where the properties of averaging have been used.[24] Important aspects of turbulent physics are 

contained in this matrix. For instance, the turbulent kinetic energy per unit mass E is closely 

related to its trace. Observe that 
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Equation (67) is an analogue of the common fluid kinetic energy. The off diagonal matrix entries 

describe how changes in component velocity fluctuations are related. For example, if 021 uu , 

then a positive change in 1u  tends to coincide, on the average, with a positive change in 2u . On 

the other hand, 021 uu , implies the changes must have opposing signs.[25] These correlations 

may be used to determine, in part, the level homogeneity or isotropicity possessed by turbulent 

fluctuations. 

 

 Since turbulent fluctuations are inherently random, they may be analyzed in accordance with 

the rules of probability. Velocity fluctuations existing at a point in space are therefore distributed 

in accordance with a probability distribution function (PDF). Given a random data set, we may 

estimate the PDF denoted by the letter f. The simple method for doing so is by histogram.[26] 

Suppose that the data consists of a finite number N of bounded velocity fluctuations, i.e., there 

exist finite numbers min,iu  and max,iu  such that 

 

                                                             max,min, iii uuu                                                          (68) 

 

for all N samples. Equation (68) delineates a domain in 
3  that may be divided into a number of 

bins. Each bin has size iiii Muuu /)( min,max,
 where the Mi are the numbers of bins 

established by the analyst along each coordinate. In this report, we calculate bivariate joint PDFs, 

e.g., ),( ji uuf  . The mechanics of calculating this PDF begin by setting all (Mi)(Mj) bins to zero. 

Next we loop over all N fluctuations; if a particular pair of fluctuations ( ji uu  , ) falls within the a 

bin delineated by (68), we add the quantity 
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to the bin sum for f. Clearly, for samples consisting of small numbers N of fluctuations, many bin 

sums may remain zero, so f may be discontinuous. Still, with the use of (68) and (69), the 

cumulative distribution function (CDF) is properly normalized, i.e., 
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The simple PDF is adequate for studying the behavior of turbulent velocity correlations, but it is 

not very smooth (especially for small data sets). A smoother PDF may be constructed by 

dispensing with the idea of bins and summing Gaussian functions for each pair of velocity 

fluctuations in the data set. As is shown below, this PDF is easily written in the form of an 

equation. 
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In (71), ( nn vu  , ) is a pair of velocity fluctuations taken from the data. The coordinate widths of 

the Gaussian are taken from the diagonal entries of the velocity correlation matrix (66). 

Specifically, 2uu
 , and 2vv

 . Equation (71) must be normalized to satisfy the 

requirements of the CDF (70); accordingly, A is the normalization constant and can be shown to 

be 
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For this PDF, selection of the domain of integration in (70) is very important. During numerical 

integration, one must ensure the domain is large enough to ensure that the CDF is 

computationally normalized. 

 

 The final tool addressing turbulent statistics employed in this work is spectral analysis. 

Turbulent fluid motions are characterized by a wide range of scales, both temporal and spatial. 

Turbulent eddies have different length and time scales. Spatial scales have a direct spectral 

analogue known as wave number, and time scales have a similar analogue known as frequency. 

Both of these analogues lend insight to the structure of turbulence. Here, we address only the 

time-frequency spectrum of turbulent kinetic energy. In our formulation, turbulent kinetic energy 

E is defined as a function of time at a single point in space, i.e., 
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The frequency spectrum is rendered by Fourier transformation of (67).[24,25] The forward 

transformation is defined as 
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while the inverse transformation is written 
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where ω is angular frequency and “i ” is the imaginary unit. Transforms (74) and (75) are 

“general”; in practice, we do not recognize the concept of negative time or negative frequency, 

so the lower the limits of the transform integrals are set to zero. The theoretical transforms are 

also continuously defined unlike the discrete data set addressed later in this report. It follows that 

we must use the discrete Fourier transform (DFT) in lieu of (74). The DFT is defined for N data 

points non-uniformly distributed in time as 
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)(ˆ E  is a complex function of real ω, so to express the frequency content of E, we plot the 

power spectral density defined, in this case as 
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a real valued function of ω. DFTs must be used with great care, especially for small data sets due 

to induced numerical errors such as aliasing. To remedy, in part, this type of difficulty, we 

observe the limitation imposed by the Nyquist sampling frequency.[27] Noting that ω=2πf , 

where f  is regular frequency in Hertz, the Nyquist limitation states that the DFT can resolve no 

frequencies exceeding fNyq where 
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where maxt  is the maximum time step between any two events adjacent in the time series. 

Obviously, from (78) there is inverse relationship between the time step between data points and 

the maximum resolvable frequency. Secondly, and not evidenced by (78) are relationships 

involving the minimal resolvable frequency as well as the ability to resolve two adjacent 

frequencies. This type of resolution say, the minimum f  is inversely proportional to the length 

of time encompassed by the entire time series. Thus, to resolve progressively lower frequencies, 

we must sample the time series for more time. Moreover, to resolve two different frequencies, 

we must sample an interval of time that covers at minimum an integer number of complete event 

cycles for both frequencies. Comparing frequency spectra for turbulent kinetic energy at 

different space points is a goal of this report. 
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4  SETTING UP THE SIMULATION 

 

This section of the report describes measures taken to set up the simulation. We endeavor to 

include enough information to allow others to conduct their own numerical studies on our 

geometry. 

 

4.1 Grid Geometry 

 

A picture of the body geometry is shown in Figure 1. As mentioned in Section 3.4, the grid is 

constructed from two-dimensional slices connected in azimuth. The surface of the body is the 

no-slip surface located at j = 1. The overall body length is 7 cm. The maximum radius of the 

body (rmax) is 1.5 cm while the minimum body radius (rmin) is 0.5 cm. The body is characterized 

by five lobes arranged in azimuth as shown in Figure 3. Because of the lobes, the maximum 

 

 
Figure 3. Azimuthal plot of the outer contour of the body illustrating the lobe positions. 

 

inner radius (contour 1X


 in Figure 2) of the two-dimensional slice changes at each azimuthal 

station. The variation in this radius is dictated by the following equations. 
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The front or nose of each slice is comprised of a disk of fixed radius rmin. On the other hand, the 

rear of each slice is comprised of a disk of radius rmax only when θ = 2πn/5, n = 0, 1, …, 4. In 

order for the body to terminate at a single point, slices located at other values of θ the rear slice 

contour is given by the same circular arc (radius rmax) multiplied by h. This multiplier has the 

effect of flattening the circular arc. Figure 4 illustrates the placement of three of the 1X


 slice 
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contours; note that the vertices for the front and rear arcs are separated by five centimeters. It is 

evident that arc representing the rear of the body is flattened for those values of θ not coinciding 

with rmax. The final portion of the 1X


 contour is the straight line segment joining the forward and 

rear arcs. Experience has shown that this line must smoothly intersect (via  continuous 

derivative) the forward and rear arcs in order to achieve a smooth distribution of grid lines. 

 

 
Figure 4. Illustration of body surface contours for different azimuth angles (slices). Each of these contours 

forms the X1 contour for generating the grid on the associated azimuthal slice. 
 

Smooth intersections may be accomplished by locating two points, one on the rear side of the 

forward arc and the other on the forward side of the rear arc, where the derivative taken with 

respect to the longitudinal coordinate x are the same. By including more points along this contour 

the intersection becomes progressively smoother. 

 

 The far field grid contour delineated by points 2X


 in Figure 2 is formed by a simple circular 

arc with a radius of 15 cm. Contours 3X


 and 4X


 are straight line segments that are common to 

all slices. Note also that the overall domain has a spherical shape. These four contours are used 

as inputs by the Hermite TFI routine described in Section 3.4. The grid utilized to generate 

results for this problem has 301 points in the longitudinal (i) direction and 201 points in each of 

the normal (j) and azimuthal (k) directions. Minimum spacing at the body surface is set at 10
-5

 

meters corresponding to a y
+
 value of just under ten.[24] 

 

4.2 Initial Conditions 

 

 As mentioned earlier, the aerodynamic body is immersed in a Mach 10 flow field at sea level. 

The body is oriented at 5˚ pitch and 5˚ yaw. The simulation is started by setting the associated 

Cartesian velocities for these conditions in the outer spherical shell of farfield cells. In the same 

cells, subgrid kinetic energy is initialized to a value of 0.01 times the freestream kinetic energy. 

The freestream temperature is set at 300˚K. Farfield boundary conditions must be specified for 

LESLIE3D. This process is performed in the initial conditions by checking for the presence of 

inflow in the outer cell layer. Suppose the V


 is the local velocity and n̂  is the outward pointing 

normal vector for a farfield cell. The boundary condition is then set as 
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The present computational study uses turbulent mixing and is non-reactive. Since it is non-

reactive, only oxygen and nitrogen gases are involved in the problem. This problem is executed 

on 512 processors (actually cores). The average time step is about 10
-11

 seconds, and 1.383 

million time steps are executed. Each step requires about 0.7 seconds of wall clock time. We 

allow the flow to settle through a travel distance of 11.5 body lengths before collecting data. 

 

 

5 RESULTS 

 

 The lobed body’s Mach 6 flight has been simulated as specified in the Section 4. Bulk 

properties such as pressure, temperature, subgrid kinetic energy and vorticity have been extracted 

from the numerical solution and used to guide the extraction of statistical information. Time 

series information is also collected regarding oscillatory forces exerted on the body as well as 

turbulent velocity fluctuations and kinetic energy. 

 

 
Figure 5. Contour plots of vorticity magnitude set on a vertically oriented plane at the body centerline. Plot 

(a) occurs at 0.428 ms solution time while plot (b) occurs at 0.439 ms. 
 

5.1 Surface Vorticity 

 

 Figure 5 shows two contour plots of vorticity magnitude adjacent to the body’s nose The bow 

shock is clearly visible and has a standoff distance of 0.678 mm from the nose. As is expected, 

high levels of vorticity are generated behind the curved bow shock and are washed downstream 

along the body surface. The vorticity field undergoes significant change over the 0.011 ms time 

interval between these two snapshots. The presence of strong vorticity fluctuations in this region 

motivates a closer examination of the flow region containing the boundary layer. The same 

vertical plane in the solution is examined in Figure 6 with enhanced magnification. The mesh is 

overlain on these plots to provide a means of geometric reference. These plots are interesting 
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Figure 6. Magnified contour plots of vorticity magnitude showing eddy organization set on a vertically 

oriented plane at the body centerline. Plot (a) occurs at 0.428 ms solution time while plot (b) occurs at 0.439 

ms. 

 

 
Figure 7. Vorticity magnitude plotted for the body adjacent cell at seven different solution times. The 

horizontal axis relates the number of grid cells downstream from the node along the body surface. 
 

since we can see vorticity generated at the shock surface (as expected), yet it is even more 

compelling to observe the flow in the region nearest to the body surface. Without losing too 

much generality, we can regard the regions inside of closed contours in 6(a) and 6(b) as eddies. 

Nearest the wall, these eddies seem to propagate upstream (to figure left) and then move 

downstream along the body. This motion is certainly admissible since the flow behind the curved 

shock is subsonic. Due to the coupling of vorticity and pressure fluctuations, we expect that a 

form of feedback exists in this region of the flow, so it becomes worthwhile to assess the strength 

of vorticity fluctuations in the boundary layer. These fluctuations may drive the production of 

turbulence. Figure 7 provides an answer to this question albeit over a fairly limited time interval. 

This figure plots vorticity magnitude in the body adjacent cell over a span of 0.141 ms. Each 
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curve plots vorticity magnitude at each station along the body surface from the nose. It is evident 

that boundary layer vorticity is very unsteady in time and drives the production of subgrid kinetic 

energy through contributions to total strain rate in equation (24). As a result, turbulence is 

produced in the boundary layer and continues to affect the downstream flow field. 

 

5.2 Surface Pressure and Temperature 

 

 
Figure 8. Plots of thermodynamic pressure at the body surface for (a) 0.428 ms and (b) 0.439 ms. 

 

 Hypersonic flow fields are characterized by escalating pressure and temperature at the surface 

of an immersed body. Pressure rises sharply at stagnation points in the flow field while the 

temperature rise is more widespread as the flow decelerates under the force of skin friction. 

Figure 8 contains plots of pressure at the body surface at 0.428 ms and 0.439 ms. Given the 

relatively simple geometric configuration for the body, the pressure field is unremarkable except 

for pressure fluctuations on the nose. Due the action of turbulent eddies at the surface, pressure 

contours distort and change periodically in time. This distortion is also noted on the lower left 

“windward” lobe of the configuration where the oncoming hypersonic flow strikes head on. The 

numerical solutions show that under time averaging, pressure fluctuations are strongly correlated 

with fluctuations in the velocity components. Table 1 contains estimates for the pressure-velocity 

correlations calculated at three points near the tip of the nose.  

 
Table 1. Pressure-Velocity correlation estimates for sampling points at the body surface near the nose tip. 

 

 Top Leeward Windward 

<    > 1.71 × 10
-4 

9.65 × 10
-4 

2.09 × 10
-3 

<     > 3.55 × 10
-5 

1.36 × 10
-3 

-1.27 × 10
-2 

<    > 3.99 × 10
-3 

1.57 × 10
-3 

-7.93 × 10
-3 

 

Vertical velocity v shows the strongest correlation with pressure fluctuations at sampling point 

on the “windward” side of the nose relatively close to the centerline. 

 

 For this body configuration, both surface temperature and temperature gradient have been 

examined. Temperature is of particular interest due to its role in inducing chemical reactions 
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between oxygen and nitrogen in the surrounding air. Although we have not yet attempted to 

simulate the attendant chemical reactions, we can determine as to whether or not temperature is 

high enough to support ionization and dissociation reactions. Body surface temperature based 

upon the adiabatic wall assumption is shown in Figure 9. These plots suggest that a significant 

 

 
Figure 9. Plots of surface temperature (˚K) based upon the adiabatic wall assumption set at solution times (a) 

0.428 ms and (b) 0.439 ms. 
 

temperature gradient exists in the lobed region of the body. We can also see evidence of 

temperature fluctuations over the body surface (analogous to the pressure fluctuations noted 

earlier). Figure 10 contains plots of the temperature gradient’s magnitude calculated at the body 

surface. These plots do show extremely high temperature gradients at the body surface particu-  

 

 
Figure 10. Plots of surface temperature gradient magnitude (˚K/m) based upon the adiabatic wall assumption 

set at solution times (a) 0.428 ms and (b) 0.439 ms. 

 

larly on the windward lobes and even in the shielded region between the leeward lobes. In the 

hottest regions, temperatures exceed 2000˚K. As a result, chemical reactions are permissible over  

a large fraction of the frontal body area. 
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5.3 Turbulence Statistics 

 

 In keeping with previous remarks, a primary focus of this numerical study is to examine the 

evolution of turbulent flow at hypersonic Mach number for an immersed body of relatively 

simple construction. For LDKM, subgrid kinetic energy drives the production of subgrid stresses 

and therefore turbulence. We begin by examining plots of subgrid kinetic energy shown in 

Figure 11. Two points on the body surface are selected in Region 1 for statistical sampling, and  

 

 
Figure 11. Plots of subgrid kinetic energy on the body surface at 0.428 ms (a) frontal view and (b) oblique 

view. Points are selected for statistical sampling from region 1 and from region 2 on the lobe surfaces. 
 

likewise, two points are selected in Region 2 where subgrid kinetic energy is substantially 

elevated. At each sampling point, time series are computed for velocity component fluctuations 

as well as for turbulent kinetic energy. Velocity correlation matrices are also computed for the 

velocity fluctuations. In concert with the time series, this information is used to compute 

probability distribution functions (PDFs) for velocity fluctuations at each sampling point. These 

PDFs are presented and discussed below. 

 

 The first sampling point is chosen at (i,k) = (200,76) in Region 1. Both simple and Gaussian 

PDFs for the uv-correlation have been obtained at this point and are presented in Figure 12. 

PDFs for the uw and vw correlations are presented in Figures 13 and 14, respectively. The simple 

PDF, indicated by (a) in each figure very much resembles a scatter plot formed for the velocity 

fluctuations and, in itself, allows the analyst to determine the sense of the velocity correlation. 

On the other hand, the Gaussian PDF serves as better indicator of symmetry or of skewness 

associated with the distribution function. These three figures are interesting because all of the 

correlations are positive. An increase (or decrease) in one velocity component tends to indicate a 

respective increase (or decrease) in the other two velocity components. Also, the PDFs indicate a 

small skewness in the distributions. The mean is shifted to the “right” in each case. Perhaps due 

to limitations in the amount of data, the distributions are not fully symmetric. An increase in the  
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Figure 12. Simple (a) and Gaussian (b) PDFs for the uv correlation at Region 1 sampling point (200,76). 

 

 
Figure 13. Simple (a) and Gaussian (b) PDFs for the uw correlation at Region 1 sampling point (200,76). 

 

 
Figure 14. Simple (a) and Gaussian (b) PDFs for the vw correlation at Region 1 sampling point (200,76) 

 

length of the time series may change this result. 

 

 PDFs for the Region 1 sampling point (i,k) = (210,75) are provided in Figures 15, 16 and 17. 

These figures contain PDFs for the uv, uw and vw velocity correlations, respectively. These plots 

are interesting because, even though the sampling point is geometrically close to (200,76), the 

uw and vw correlations are negative. This result is the opposite of that encountered at the 

neighboring sample point. Secondly, these two correlations exhibit a high level of skewness; 

their PDFs are noticeably stretched. These results indicate that the eddies with drastically 

opposite velocity arrangements occur very close together on the body surface. 
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Figure 15. Simple (a) and Gaussian (b) PDFs for the uv correlation at Region 1 sampling point (210,75). 

 

 
Figure 16. Simple (a) and Gaussian (b) PDFs for the uw correlation at Region 1 sampling point (210,75). 

 

 
Figure 17. Simple (a) and Gaussian (b) PDFs for the vw correlation at Region 1 sampling point (210,75). 

 

 In Figures 18, 19 and 20, the velocity correlation PDFs (retaining the same order) are shown 

for sampling point (i,k) equal to (215,166). This sampling point resides in Region 2 as indicated 

in Figure 11. The uv and uw PDFs shown in Figures 18 and 19 indicate correlated velocity 

components, but corresponding correlation matrix entries are somewhat low. Still, the u and v 

fluctuations are positively correlated at this point. The corresponding simple PDFs show a 

significant amount of scatter in the solution as evidence of poorer correlation. On the other hand, 

the vw correlation is very positive and clearly reflects the order exhibited by the simple PDF. 

Each of these PDFs exhibits a skewed distribution tending to favor a decrease-v — decrease-w 

tail in the PDF. 
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Figure 18. Simple (a) and Gaussian (b) PDFs for the uv correlation at Region 2 sampling point (215,166). 

 

 
Figure 19. Simple (a) and Gaussian (b) PDFs for the uw correlation at Region 2 sampling point (215,166). 

 

 
Figure 20. Simple (a) and Gaussian (b) PDFs for the vw correlation at Region 2 sampling point (215,166). 

 

 In the way of clarification, the PDFs shown in the figures in this section of the report are 

graphed in terms of equi-probability contours. This statement applies to both the simple and 

Gaussian PDFs. Figures 21,23 and 23 exhibit the PDFs for sampling point (i,k) set at (230,168), 

a point in relatively close proximity to the preceding point (215,166) also in Region 2. One can 

see that the v velocity fluctuations correlate negatively with the corresponding u and w 

components while the u and w positively correlate. It is also evident that the correlation matrix 

components are quite large representing large covariance values. The resulting PDFs are spread 

widely over the velocity planes and have reduced point magnitudes. Each of these PDFs is 

skewed with a significant tail leading away from the mean. Yet, there is less scatter among the 

fluctuating velocity components. Some of the skewness may be due to the small sample size 
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Figure 21. Simple (a) and Gaussian (b) PDFs for the uv correlation at Region 2 sampling point (230,168). 

 

 
Figure 22. Simple (a) and Gaussian (b) PDFs for the uw correlation at Region 2 sampling point (230,168). 

 

 
Figure 23. Simple (a) and Gaussian (b) PDFs for the vw correlation at Region 2 sampling point (230,168). 

 

used for this analysis. Overall, it is interesting to see how different the covariance matrix entries 

are for two closely spaced points in the same region. Examples are the uw correlations for 

Region 1 and both the uv and vw correlations calculated in Region 2. At each sampling point, the 

velocity fluctuations exhibit randomness albeit with components with widely differing 

magnitudes in certain cases. The covariance matrix entries illustrate this concept quite well and 

prove very useful in computing the Gaussian-based PDF. 
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5.4 Turbulence Spectra 

 

 Turbulence involves a wide range of scales in fluid motion as energy cascades from the scales 

of the mean (exterior) flow field down to the smallest scales where fluid kinetic energy is 

dissipated in the form of heat.[24] Thus far, we have conveyed no direct information that 

indicates the scale(s) associated with velocity fluctuations. In this section, we provide evidence 

of the scales involved through the inclusion of time-based spectra. Here we examine spectra for 

velocity component fluctuations and of turbulent kinetic energy (67). Power spectral densities 

are calculated via discrete Fourier transformation (Section 3.5) to convey the frequency content 

of fluctuating quantities. The spectra are calculated at the same sampling points used in the 

preceding section. Consider sampling point (i,k) = (200,76); its power spectral density is 

provided in Figure 24.  Although the spectrum is inactive for frequencies below 200,000 rad/s, 

 

 
Figure 24. Power spectral densities for all three fluctuating velocity components and for turbulent kinetic 

energy calculated at sampling point (200,76) in Region 1. 
 

but there is a great deal of activity in the high frequency section. In its entirety, the spectrum 

shown occurs below the Nyquist frequency. The lack of activity in the low frequency section is 

likely due to the short sampling interval of 0.049 ms. A significant increase in the sampling 

interval is needed not only to capture lower frequency eddies but also to sharpen or better resolve 

the high frequency peaks in the spectrum. Figure 24 is clear evidence of a great deal of small 

scale motion. This behavior is also reflected at sampling point (210,75). Its spectrum, again 

computed in Region 1, is shown in Figure 25. The notation F( ), F(  ), F( ) and F(TKE) 

represents the power spectral densities for the three fluctuating velocity components and for 

turbulent kinetic energy, respectively. Although this spectrum also has low activity at lower 

frequencies, the high frequency bands are even more energetic. This behavior is quite 

noteworthy because the two sampling points in question are in close proximity to one another. 

For further information, we consider sampling points in Region 2. The spectra for sampling point 

(215,166) are presented in Figure 26. Again, the high frequency segment of the spectrum is very 

active, but the low frequency segment is not developed well due to the short sampling interval. 

The smooth curves in this section are not characteristic of fully developed spectra. A jagged 

spectrum is expected in the low frequency range, but a greatly expanded sampling interval is 
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needed in order to obtain it. Similar spectral behavior is exhibited in Figure 27, computed for 

sampling point (230,168) in Region 2. 

 

 
Figure 25. Power spectral densities for all three fluctuating velocity components and for turbulent kinetic 

energy calculated at sampling point (210,75) in Region 1. 
 

 
Figure 26. Power spectral densities for all three fluctuating velocity components and for turbulent kinetic 

energy calculated at sampling point (215,166) in Region 2. 
 

5.5 Aerodynamic Forces 

 

 From LESLIE3D’s numerical solutions, we have computed the aerodynamic force 

components Fx, Fy and Fz exerted on the immersed body. This information is also amenable to 

time series analysis; in particular, frequencies of oscillation can be extracted from the force time 

history. The turbulent, viscous flow field has a pronounced effect on the aerodynamics of the 

body since tractions (skin friction) and separated flow (at higher pitch/yaw angles) can strongly 

alter the forces exerted on the body. The time history for Fx is shown in Figure 28. This plot 
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Figure 27. Power spectral densities for all three fluctuating velocity components and for turbulent kinetic 

energy calculated at sampling point (230,168) in Region 2. 
 

 
Figure 28. Time history plot of the x-component Fx of aerodynamic force exerted on the body. 

 

a great deal of high frequency activity. Yet, there is evidence of some low frequency activity that 

may not be fully resolved in the relatively small sampling window applied here. Some flow 

separation, not yet revealed, may cause larger excursions in Fx due to vortex shedding. Plots of 

the time histories Fy and Fz are shown in Figure 29. In the y and z directions, the force excursions 

are not as large as in the x direction, but the high frequency content is still present. A low 

frequency oscillation may also be present. As before, our sampling interval is too short to fully 

reveal this dynamic. Power spectral densities have been extracted from the force component time 

histories. Plots of frequency content for these force components are shown in Figure 30. In spite 

of the small sampling window, the discrete Fourier transformation does resolve some frequency 

content. A fundamental frequency of oscillation is revealed at 82,000 rad/s. A number of higher 

frequency peaks are also captured and not necessarily at integer multiples of the fundamental. 

For instance, a secondary peak is located at 235,000 rad/s and a third at 389,000 rad/s. The high 
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Figure 29. Time history plots of the x and y-components Fx and Fy of aerodynamic force exerted on the body. 
 

 
Figure 30. Power spectral density plots for the three aerodynamic force components. 

 

 

frequency section of the spectrum is very active for all three components indicating the presence 

of many oscillatory frequency all below the Nyquist sampling frequency. This information 

stands as a reasonable indicator for the presence of a turbulent flow around the body. 

 

6 CONCLUSIONS 
 

 This report has addressed some aspects of the hypersonic aerodynamics of lobed body. In 

particular, we are concerned with evolution of turbulent flow around the body with a distribution 

of subgrid kinetic energy defined at the far field boundary of the computational domain. The 

simulation is conducted at Mach 6, sea level flight conditions, with pitch and yaw angles fixed at 

five degrees. LESLIE3D, a multiphase physics computer code developed by Suresh Menon at 

Georgia Tech, is used to perform the simulation on 512 processors. The algorithms employed by 
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LESLIE3D include the locally dynamic subgrid kinetic energy model with fixed coefficients. A 

number of results are shown in this report such as body surface pressure, temperature and 

subgrid kinetic energy. The standoff distance for the curved bow shock has also been included, 

and a study of vorticity evolution behind the shock and in the boundary layer is discussed. 

Statistics for the turbulent flow field have been calculated, namely, the velocity covariance 

matrix. Probability distribution functions have been computed for velocity component 

fluctuations and turbulent kinetic energy. Time-based spectra are also provided for the same 

quantities. Aerodynamic force time histories are also provided, and the attendant frequency 

content has been computed. 

 

 The flow field is characterized by turbulent eddies, particularly in regions on the lobes where 

subgrid kinetic energy is very high. The time sampling interval of 0.049 ms is rather short, so the 

spectra are not fully developed, particularly at lower frequencies. That is to say, to resolve a 

frequency of 100 rad/s, a sampling time on the order of 1.6 ms is required. Clearly, more 

simulation time is required to resolve frequencies this low. Still, the velocity field contains a 

great deal of random character, and the high frequency spectral band is very active. Fluctuating 

quantities like velocities, pressure and aerodynamic force demonstrate a high degree of 

randomness as expected for a turbulent flow field. This behavior is reflected in the results of 

spectral analyses performed on the velocity field and aerodynamic force components. Each 

spectrum, although limited by a relatively short sampling window, is characterized by the 

presence of many high frequency components all captured below the Nyquist frequency. Further 

spectral study of this flow field is warranted for a substantially wider sampling window. 
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